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Outline

• Special problems with Studying Rare Diseases in 
Pediatric Populations.

• Bayesian Methods for solutions

– Zero Numerator Problem with Rare Events

– Borrowing Strength from Similar Studies to Boost 
Sample Size

• Forthcoming Pediatric Extrapolation Draft Guidance

– Bayesian Adaptive Designs for Shorter Trials

• Summary
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Special Problems with Studying Rare Diseases 

in Pediatric Populations

• The pediatric population available for clinical trials is 

limited even when the condition/disease is not rare.

– Informed consent might be more difficult in pediatrics.

– Finding an appropriate control could be difficult.

– Problematic: results more prone to variability and studies lack 
power

• Rare conditions or events may not occur in a finite 
collected sample of pediatric patients.

– Problematic: Estimating an event rate is difficult with no 
events



Overview of  Bayesian Approach

• The Bayesian approach describes a method for 

learning from evidence as it accumulates.

• The method combines prior information with 

current study information on an endpoint of  

interest (e.g., adverse event rate from using a 

device) in order to form conclusions about the 

endpoint.

•
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Prior information typically comes from results 

of  previous studies.
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Overview of  Bayesian Approach

• Often, prior information can be used to help 

estimate rare event rates and gain power for 

small populations.

• In short, a way to combine the past (prior) with 

the present (current study) to make decisions 

about the future (posterior conclusions).

• FDA “Guidance for the Use of  Bayesian Statistics in 

Medical Device Trials” released in final form 

February, 2010.
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Special Problem #1

Rare conditions or events may not occur in a 

finite collected sample of patients.
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Zero Numerator Problem
Example based on Chen & McGee (2008)

• A standard test or device has been shown to 
cause a serious reaction in about 15 of every 
10,000 patients exposed to it (0.0015). A new 
improved test/device was used on 167 patients 
and none of them reported having the reaction.

• What can we say about the probability of a 
serious reaction for the new test/device? Is it 
really 0%?
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Zero Numerator Problem
Example based on Chen & McGee (2008)

• “Rule of three” estimate of the upper bound of a 95% 
confidence interval is a conservative approximation: 
3/n = 3/167 = 0.018

• Approximation holds better with larger n.

• We would like a point estimate of the occurrence rate 
too.  

• Bayesian methods can obtain this (even with small 
samples), as well as uncertainty intervals with direct 
probability interpretations.
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Actual Submission (Zero Numerator):

EssureTM System for Permanent Birth Control

• SSED:

http://www.accessdata.fda.gov/cdrh_docs/pdf2/P020014b.pdf

• Micro-Insert that occludes the fallopian tubes

• Zero pregnancies were observed in pivotal study 

(n=632).  However, because no birth control is 100% 

effective, an estimate of a 0% fertility rate at 12 months 

appears inaccurate. 

• Bayesian Statistics/Models can help so that the estimate 

is not 0% when that is unrealistic.
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Bayesian Estimate of  Rare Event Rate

• Prior distribution placed on p, the probability of 
experiencing the event.

• Examples of prior distributions:

– Prior mean is equal to the standard rate (e.g., 
0.0015), and there is a 95% chance that p is less than 
0.0075.

– “Vague” Uniform prior distribution (equal 
probability that p falls anywhere between 0 and 1.0)

– Hierarchical model: common method used in 
CDRH 



Bayesian Estimate of  Rare Event Rate

• Posterior Estimates (from posterior distribution)

– Posterior mean rate is not 0%, but something more 
realistic and satisfying. 

• (Chen & McGee Example) The posterior mean is 
0.00022, which is much less than 0.0015.

• (Uniform prior) The posterior mean is 0.0016.

– Posterior probability statements can be made:

• (Chen & McGee Example) There is 96% posterior 
probability that the rate is lower than the standard rate of 
0.0015.

•
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(Uniform prior) There is 39% posterior probability that 
the rate is lower than the standard rate of 0.0015.
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Special Problem #2:

The pediatric population available for clinical 

trials is limited. 

Bayesian Methods can be used to gain power 

by combining prior studies with a current 

study. 



13

Boost Sample size by “borrowing strength” 

(information) from prior studies

• By borrowing from appropriate prior 
information, the same decision might be reached 
with a smaller (recruitment) sample size. 

– The extent of  borrowing depends on the similarity 
of  previous studies with the current study.

– If  prior study results are different from current 
study result, then borrowing strength weakens (and 
can go to zero).
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Bayesian Hierarchical Models

• “Borrow strength” from prior studies similar to a 
current study on an endpoint of  interest.

– Effective sample size boost: we borrow information provided 
by subjects in the prior studies

– We don’t know how much we will borrow until the current 
data become available.

• The model lets the current and prior studies determine how 
much to borrow.
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Assumption of  Exchangeability is Required 

for the Hierarchical Model

• Exchangeability of  studies means that knowing a result 
would not divulge which study it came from. (Are the 
studies comparable?)

• Ideally, it is decided upon before seeing any study results 
(even the prior study results).

• To decide whether exchangeability of  prior and current 
studies can be assumed, we need clinical input.
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Assumption of  Exchangeability is Required 

for the Hierarchical Model

• To decide whether exchangeability of  prior and current 

studies can be assumed, we need clinical input.

– CDRH clinicians and engineers compare previous studies 
with proposed study for similarity in relevant factors, 
including  

device used patient population 
protocol inclusion/exclusion criteria
prognostic factors patient management
proximity operator training/experience
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Pediatric Medical Device Safety & 

Improvement Act (PMDSIA) 2007 

• To improve the process for the development of  needed pediatric 
medical devices.

• Allows determination of  a pediatric indication for a medical device, 
using adult data, if:
– Similar Course of  Disease or Condition, or 

– Similar Effect of  Device 

• “Extrapolation” of  a device’s effect or safety may be made:
– From adults to pediatric patients 

– Between pediatric subpopulations

• Can potentially be made for approvals and clearances (PMAs, 

HDEs, 510Ks), as well as during the IDE stage.



Draft Guidance Document

“Extrapolation of  Data for Pediatric Uses of  

Medical Devices”

• General Factors for Consideration for Extrapolation:
1. Similarity of  Adult Population/Response Data with future 

Pediatric Response Data
– Will there be differences in device characteristics, disease process, or 

patient characteristics that will likely make responses to treatment 
with device different for the pediatric population than adults?

2. Quality of  Adult Data
– How were the data collected, assigned to treatments? (Recent final 

CDRH Guidance)

•
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The higher the similarity and quality, the more likely 
extrapolation will be appropriate for regulatory 
submissions. If  both are low, we cannot rely on adult 
data for pediatric indication.
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Are Adult and Pediatric Studies 

Exchangeable?

• Obvious Differences in physiology

• Study Conduct Differences

– Enrollment might differ between adult and pediatric 
studies.

– Informed consent might differ between adult and 
pediatric studies.

– Treatment or handling in the trial might differ 
between adult and pediatric studies.

• With these dissimilarities, how can we still 
borrow from adult studies?
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Three-level Hierarchical Model Structure: 

Studies within Patient Populations are Exchangeable

Patient Populations

PediatricsAdultsLevel 3:

Study 1 Study 2 Study 3 Future StudyLevel 2:

y1,…y1,…,yn1 y1,…,yn3y1,…,yn2Level 1:

Level 1: Patients (y) exchangeable within studies

Level 2: Studies exchangeable within patient populations.

Level 3: Patient populations are exchangeable.
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Conditional Exchangeabilty

• Important for pediatrics: Growth or size of  

the patient might influence effectiveness of  the 

device.

• If  the covariate is measured in all studies, we can 

assume exchangeability across populations, 

conditional on this covariate, and hence borrow 

strength from adults to pediatrics.
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Adult Study 1

(n=250)

Adult Study 2

(n=150)

Adolescent Study

(n=20)

41% 34% 20%

Average Excess Weight Loss in Percentages

Hypothetical Example: 

SlimFix Device for Weight Loss

Single Arm Study
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Population Study Posterior Mean Percent 
Excess Weight loss (SD)

Adolescent
Baseline 

“Size”=0.85

Study 3 (n=20) 22.8% (5.1%)

No Borrowing from Adult Studies

Adjusting for “Baseline Size”

Population Study Posterior Mean Percent 
Excess Weight loss (SD)

Adolescent
Baseline 

“Size”=0.60

Study 3 (n=20) 19.8% (3.1%)
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Borrowing from Adult Studies

Population Study Posterior Mean Percent 
Excess Weight loss (SD)

Adults
“Size”=0.85

Study 1 (n=250) 38.7% (0.7%)
Study 2 (n=150) 33.0% (0.9%)

Adolescent
“Size”=0.85

Study 3 (n=20) 24.3% (3.0%)

Population Study Posterior Mean Percent 
Excess Weight loss (SD)

Adults
“Size”=0.60

Study 1 (n=250) 32.2% (1.7%)
Study 2 (n=150) 27.4% (1.9%)

Adolescent
“Size”=0.60

Study 3 (n=20) 20.0% (2.2%)
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Borrowing from Adult Studies

Effective Sample Size in Pediatric Study (when “Size” = 0.85) = 58:

38 subjects’ worth of  information was borrowed from the adult studies

(out of  a possible 250 + 150 = 400)

Effective Sample Size in Pediatric Study (when “Size” = 0.60) = 40:

20 subjects’ worth of  information was borrowed from the adult studies

(out of  a possible 250 + 150 = 400)
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Adaptive/Flexible Designs 

• Trial designs that allow modifications during the course of  a trial 
without negatively impacting false positive error rate.

• Adaptations are performed at an interim look, based on revised 
estimates of  variance and/or treatment effect, or external information.

• Examples

– Change criteria for entry into trial

– Dropping/Adding an arm

– Change randomization ratio

– Sample size re-estimation 

– Stop early for effectiveness or futility

• Specific adaptations should be pre-specified in order to be 
carried out without complications/concerns from regulators.

• Interim looks should be performed by an independent third party
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Bayesian adaptive sample size using 

predictive probability

• Predictive Distribution describes what the 

unobserved outcomes for future patients 

(enrolled or not yet accrued) will be midcourse 

in a trial, given the observed patients’ data.

• This distribution provides the predictive 

probability of  trial success before all patients 

finish the trial.
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Bayesian Predictive Probability

• Might be used to predict a clinical outcome from a 
valid surrogate.

• Might be used to stop a trial early (for success or 
futility).

• Might be used to stop accrual of  patients into the 
trial.

• Key point: Often lead to shorter trials or smaller 
trials.
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Summary Statements

• Bayesian Methods can handle difficulties with 

studying rare conditions in pediatric populations.

– More realistic estimates of rare event rates

– Borrow strength from adult data to make decisions 

about device performance in pediatrics. (Adult 

clinical data may be available from previous 

marketing applications).

• Adaptive Designs and Predictive Probability 

may shorten lengthy trials.


